Minggu, 11 November 2018

Jawaban CONTOH-CONTOH soal SPLTV

Assalamuallaikum temen-temen...

Di postingan keempat ini saya akan memberikan jawaban dari contoh-contoh soal yang sudah saya berikan di postingan ketiga kemarin. Gausah pake lama-lama. YUK, ini dia jawabannya.

1. Jawaban untuk nomor pertama.
 
 Pertama, kita tentukan dulu persamaan yang paling sederhana. Dari ketiga persamaan yang ada, persamaan pertama lebih sederhana. Dari persamaan pertama, nyatakan variabel x sebagai fungsi y dan z sebagai berikut.
 x + y  z = 3
 x =  y + z
 Subtitusikan peubah x ke dalam persamaan kedua
 x + 2y + z = 7
 ( y + z) + 2y + z = 7
 3 + y + 2z = 7
 y + 2z = 7 + 3
 y + 2z = 10 ……………….. Pers. (3)
 Subtitusikan variabel x ke dalam persamaan ketiga
 2x + y + z = 4
 2( y + z) + y + z = 4
  2y + 2z + y + z = 4
 y + 3z = 4 + 6
 y + 3z = 10 ……………….. Pers. (4)
 Persamaan (3) dan (4) membentuk SPLDV y dan z:
y + 2z = 10
y + 3z = 10
 Selanjutnya kita selesaikan SPLDV tersebut dengan metode subtitusi. Pilih salah satu persamaan yang paling sederhana yaitu persamaan pertama. Dari persamaan pertama, kita peroleh
 y + 2z = 10
 y = 10  2z
 Subtitusikan peubah y ke dalam persamaan kedua
 y + 3z = 10
 (10  2z) + 3z = 10
 10 + 2z + 3z = 10
 10 + 5z = 10
 5z = 10 + 10
 5z = 20
 z = 4
 Subtitusikan nilai z = 4 ke salah satu SPLDV, misal y + 2z = 10 sehingga kita peroleh
 y + 2z = 10
 y + 2(4) = 10
 y + 8 = 10
 y = 10  8 
 y = 2
 Selanjutnya, subtitusikan nilai y = 2 dan z = 4 ke salah satu SPLTV, misal x + 2y + z = 7 sehingga kita peroleh
 x + 2y + z = 7
 x + 2(2) + 4 = 7
 x + 4 + 4 = 7
 x + 8 = 7
 x = 7  8
 x = 1
Dengan demikian, kita peroleh nilai x = 1, y = 2 dan z = 4. Sehingga himpunan penyelesaian dari SPLTV di atas adalah {(1, 2, 4)}.

Untuk memastikan bahwa nilai x, y, dan z yang diperoleh sudah benar, kalian dapat mengeceknya dengan cara mensubtitusikan nilai x, y, dan z ke dalam tiga SPLTV di atas.
 Persamaan pertama
 x + y  z = 3
 1 + 2  4 = 3
 34 = 3 (benar)
 Persamaan kedua
 x + 2y + z = 7
 1 + 2(2) + 4 = 7
 1 + 4 + 4 = 7
 7 = 7 (benar)
 Persamaan ketiga
 2x + y + z = 4
 2(1) + 2 + 4 = 4
 2 + 2 + 4 = 4
 4 = 4 (benar)
Berdasarkan pembuktian tersebut, maka bisa dipastikan bahwa nilai x, y dan z yang diperoleh sudah benar dan memenuhi sistem persamaan linear tiga variabel yang ditanyakan.

2. Jawaban untuk jawaban kedua.

Langkah pertama, kita tentukan variabel mana yang akan kita eliminasi terlebih dulu. Untuk mempermudah, lihat variabel yang paling sederhana. Dari ketiga SPLTV di atas, variabel yang paling sederhana adalah x sehingga kita akan mengeliminasi x terlebih dulu. Untuk menghilangkan variabel x, maka kita harus samakan koefisien masing-masing x dari ketiga persamaan. Perhatikan penjelasan berikut.
x + 3y + 2z = 16  koefisien x = 1
2x + 4y  2z = 12  koefisien x = 2
x + y + 4z = 20  koefisien x = 1
Agar ketiga koefisien x sama, maka kita kalikan persamaan pertama dan persamaan ketiga dengan 2 sedangkan persamaan kedua kita kalikan 1. Prosesnya adalah sebagai berikut.
x + 3y + 2z
=
16
|× 2|
2x + 6y + 4z
=
32
2x + 4y  2z
=
12
|× 1|
2x + 4y  2z
=
12
x + y + 4z
=
20
|× 2|
2x + 2y + 8z
=
40

Setelah koefisien x ketiga persamaan sudah sama, maka langsung saja kita kurangkan atau jumlahkan persamaan pertama dengan persamaan kedua dan persamaan kedua dengan persamaan ketiga sedemikian rupa hingga variabel x hilang. Prosesnya seperti di bawah ini.
 Dari persamaan pertama dan kedua:
2x + 6y + 4z
=
32

2x + 4y  2z
=
12
2y + 6z
=
20

 Dari persamaan kedua dan ketiga:
2x + 4y  2z
=
12

2x + 2y + 8z
=
40
2y  10z
=
28

Dengan demikian, kita peroleh SPLDV sebagai berikut.
2y + 6z = 20
2y  10z = 28
Langkah selanjutnya adalah kita selesaikan SPLDV di atas dengan metode eliminasi. Pertama, kita tentukan nilai y dengan mengeliminasi z. Untuk dapat mengeliminasi variabel z, maka kita harus menyamakan koefisien z dari kedua persamaan. Perhatikan penjelasan berikut.
2y + 6z = 20  koefisien z = 6
2y  10z = 28  koefisien z = 10
Agar kedua koefisien z sama, maka persamaan pertama kita kali dengan 5 sedangkan persamaan kedua kita kali dengan 3. Setelah itu, kedua persamaan kita jumlahkan. Prosesnya adalah sebagai berikut.
2y + 6z
=
20
|× 5|
10y + 30z
=
100

2y  10z
=
28
|× 3|
6y  30z
=
84
+





16y
=
16





y
=
1


Kedua, kita tentukan nilai z dengan mengeliminasi y. Untuk dapat mengeliminasi variabel y, maka kita juga harus menyamakan koefisien y dari kedua persamaan. Berhubung koefisien y kedua persamaan sudah sama, maka kita bisa langsung mengurangkan kedua persamaan tersebut. Prosesnya adalah sebagai berikut.
2y + 6z
=
20

2y  10z
=
28
16z
=
48
z
=
3


Sampai pada tahap ini kita sudah memperoleh nilai y = 1 dan z = 3. Langkah terakhir, untuk mendapatkan nilai x, kita subtitusikan nilai y dan z tersebut ke dalam salah satu SPLTV, misalnya persamaan x + y + 4z = 20 sehingga kita peroleh:
 x + y + 4z = 20
 x + 1 + 4(3) = 20
 x + 1 + 12 = 20
 x + 13 = 20
 x = 20  13
 x = 7
Dengan demikian kita peroleh nilai x = 7, y = 1 dan z = 3 sehingga himpunan penyelesaian SPLTV di atas adalah {(7, 1, 3)}.

3. Jawaban untuk nomor ketiga

 Metode Eliminasi (SPLTV)

Langkah pertama, kita tentukan variabel mana yang akan kita eliminasi terlebih dahulu. Untuk mempermudah, lihat variabel yang paling sederhana. Dari ketiga SPLTV di atas, variabel yang paling sederhana adalah y sehingga kita akan mengeliminasi y dulu. Untuk menghilangkan peubah y, maka kita harus menyamakan koefisien masing-masing y dari ketiga persamaan. Perhatikan penjelasan berikut.
 y + 2z = 4  koefisien y = 1
2x + 2y  z = 2  koefisien y = 2
3x + y + 2z = 8  koefisien y = 1
Agar ketiga koefisien y sama, maka kita kalikan persamaan pertama dan persamaan ketiga dengan 2 sedangkan persamaan kedua kita kalikan 1. Prosesnya adalah sebagai berikut.
 y + 2z
=
4
|× 2|
2x  2y + 4z
=
8
2x + 2y  z
=
2
|× 1|
2x + 2y  z
=
2
3x + y + 2z
=
8
|× 2|
6x + 2y + 4z
=
16

Setelah koefisien y ketiga persamaan sudah sama, maka langsung saja kita kurangkan atau jumlahkan persamaan pertama dengan persamaan kedua dan persamaan kedua dengan persamaan ketiga sedemikian rupa hingga variabel y hilang. Prosesnya seperti di bawah ini.
 Dari persamaan pertama dan kedua:
2x  2y + 4z
=
8

2x + 2y  z
=
2
+
4x + 3z
=
10

 Dari persamaan kedua dan ketiga:
2x + 2y  z
=
2

6x + 2y + 4z
=
16
4x  5z
=
14
4x + 5z
=
14


Dengan demikian, kita peroleh SPLDV sebagai berikut.
4x + 3z = 10
4x + 5z = 14

 Metode Subtitusi (SPLDV)
Dari SPLDV pertama kita peroleh persamaan x sebagai berikut.
 4x + 3z = 10
 4x = 10  3z
Lalu kita subtitusikan persamaan y tersebut ke SPLDV kedua sebagai berikut.
 4x + 5z = 14
 (10  3z) + 5z = 14
 10 + 2z = 14
 2z = 14  10
 2z = 4
 z = 2
Kemudian, untuk menentukan nilai x, kita subtitusikan nilai z = 2 ke dalam salah satu SPLDV, misalnya persamaan 4x + 3z sehingga kita peroleh:
 4x + 3(2) = 10
 4x + 6 = 10
 4x = 10  6
 4x = 4
 x =1
Langkah terakhir, untuk menentukan nilai y, kita subtitusikan nilai x = 1 dan z = 2 ke dalam salah satu SPLTV di atas, misalnya persamaan x  y + 2z = 4 sehingga kita peroleh:
 x  y + 2z = 4
 (1)  y + 2(2) = 4
 1  y + 4 = 4
 5  y = 4
 y = 5  4
 y = 1
Dengan demikian kita peroleh nilai x = 1, y = 1 dan z = 2 sehingga himpunan penyelesaian SPLTV di atas adalah {(1, 1, 2)}.

Nah, di atas merupakan jawaban-jawaban dari contoh soal Sistem Persamaan Linear Tiga Variabel. sekarang Kalian sudah tahu kan apa itu SPLTV, penemu dari SPLTV, metode apa saja jika ingin menghitung SPLTV. untuk itu saya pamit undur diri. Wassalamuallaikum temen-temen...



CR: https://blogmipa-matematika.blogspot.com/2018/06/kumpulan-contoh-soal-dan-jawaban-spltv.html


Tidak ada komentar:

Posting Komentar